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Abstract

An inverse algorithm is developed for the design of the solidification processing systems. The algorithm entails the use of the Tikho-
nov regularization method, along with the L-curve method to select an optimal regularization parameter. Both the direct solution of
moving boundary problems and the inverse design formulation are presented. The design algorithm is applied to determine the optimal
boundary heat flux distribution to obtain a unidirectional solid–liquid interface in a 2-D cavity. The inverse calculation is also performed
with a prescribed sinuous solid–liquid interface. To this end, a whole time-domain method and a sequential method are used and eval-
uated. The L-curve based regularization method is found to be reasonably accurate for the purpose of designing solidification processing
systems. We also found that the sequential method with appropriately selected time domains is comparative to the whole time-domain
method.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Knowledge of liquid–solid interface morphology during
solidification processing is of paramount importance to the
microstructure formation in solidified materials. Because
often the solid–liquid interface position is unknown a

priori, the problem of finding the interface is classified as
moving boundary problems. The widespread use of solidi-
fication principle in materials processing systems has
resulted in both theoretical and experimental studies on
the subject. A wide variety of numerical models have been
developed for virtually every kind of solidification process-
ing systems. Both the fixed grid and moving grid methods
have been used to model the solidification phenomena. The
former involves the use of enthalpy-based formulation in
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which the latent heat is factored into an effective heat
capacity. The latter, however, tracks the solidification
front, that is, the solid–liquid interface continuously by
deforming the grids or elements. There are alternatives that
involve a level set field variable to mark the solid–liquid
interface. Model developed using these techniques have
been applied mainly to answer the question concerning
the interface position and morphological development for
given operating conditions and specified geometric
constraints.

In designing solidification processing systems, questions
are often posed inversely. In practice a desired solidifica-
tion microstructure in the final products dictates a certain
type of solid–liquid interface front morphology. Thus ques-
tion often arises of how the boundary heat flux distribution
needs to be specified in order to obtain the desired solid–
liquid interface during solidification processing. The objec-
tive of this paper is to present a numerical algorithm for the
purpose of inversely designing solidification processing
systems.
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Nomenclature

Mathematical symbol

kk norm of a matrix or vector

Latin symbols

A coefficient matrix
BT coefficient matrix
C specific heat
DT coefficient matrix
d solidification interface distance
�d ideal solidification interface distance
E coefficient matrix
F coefficient matrix
f trial function
GT coefficient matrix
g gravity force
H latent heat
î; ĵ unit vectors of ith, jth components
I number of piecewise functions
J sensitivity coefficient matrix
K coefficient matrix
k thermal conductivity
LT coefficient matrix
L number of controlled parameters for time
M coefficient matrix
Mp coefficient matrix
M number of controlled parameters for space
NT coefficient matrix
N number of unknowns
n normal direction
P piecewise function
p pressure
q heat flux
S sum of squares error

T temperature
s solid–liquid interface
Tm melting temperature
t time
u velocity
V volume
x, y coordinates

Greek symbols

a regularization parameter
b thermal expansion coefficient
e penalty parameter for pressure
U monotonically increasing function
/ shape function for velocity
k perturbation value
l viscosity
h shape function for temperature
q density
r standard deviation
s viscous stress tensor
X computational domain
w shape function for pressure

Subscripts

i, j i, jth points
m melting
max maximum value
l liquid
s solid

Superscripts

T transpose
K iteration number
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Inverse heat transfer problems are well known in heat
transfer community. Several monographs have also been
devoted to the subject. It is a well-known fact that the
inverse heat transfer problem is ill posed generally,
although physically possible. Thus, solution of the inverse
heat transfer problems often requires some sorts of regular-
ization to make the problem solvable. The authors [1] have
recently developed and evaluated several inverse algo-
rithms in the heat conduction problem: the regularization
method, the singular value decomposition (SVD), and the
Levenberg–Marquardt method.

It is, however, conceivable that inverse free boundary
problems can be more complex in general than inverse heat
conduction problems. One of the applications of the
inverse problems for solidification processing systems is
the determination of the boundary condition by utilizing
either experimental measurements (inverse solidification
problems) or prescribed conditions (optimal solidification
design problems). The inverse solidification problems have
been investigated in literature. Krishnan and Sharma [2]
found casting/mold interfacial heat transfer coefficients
using experimental temperature measurements for casting
solidification problems. They used the finite difference
method (FDM) combined with the Beck’s method for their
inverse algorithm. O’Mahoney and Browne [3] combined
their inverse algorithm with the integral-derivative method
to find interfacial heat transfer coefficients using tempera-
ture measurements. Xu and Naterer [4] found temperature
distribution using the prescribed solid–liquid interface
location and heat fluxes. Hale et al. [5] used the Global
Time Method (GTM) for their inverse algorithm to find
heat flux distribution in the boundary of both liquid and
solid phase using the prescribed temperature and heat flux
in the liquid–solid interface. In their approach, the solid
and liquid regions are treated as two distinct inverse heat
transfer problems. Dulikravich et al. [6] found optimal
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magnetic fields on the boundary by specifying desired mag-
netic field lines and temperature distribution. Zabaras et al.
[7–11] studied the inverse solidification problems both with
and without fluid flow being considered. They reported
various algorithms including the Beck’s method, the steep-
est descent method (SDM), and the conjugate gradi-
ent method (CGM). The authors [12] recently applied the
regularization method for the inverse steady-state solidifi-
cation problem to find the optimal heat flux distribution
for the prescribed solid–liquid interface. Most of the work
up to date has been limited to conduction mode only and
few have considered the fluid flow effects. In addition, the
prescribed solid–liquid interfaces in the previous work have
been limited to the simple shapes such as a straight line.

In this paper, we present an inverse computational
methodology for the solution of designing solidification
processes. The motivation for this work is derived from
the successful study in the heat transfer community for
the prediction of heat transfer coefficients and thermophys-
ical properties using measured thermal data such as tem-
perature distribution and reported work on the subject.
Unlike the previously reported study on the inverse solidi-
fication problems, our algorithm is based on the Tikhonov
regularization method, along with carefully selected regu-
larization parameter. The formulation of the problem
and selection of the regularization parameter for moving
boundary problems are discussed, along with the L-curve
method to select an optimal regularization parameter for
the inverse design calculations. The design algorithm is
applied to determine the optimal boundary heat flux distri-
bution to obtain unidirectional and sinuous solid–liquid
interfaces in a 2-D cavity. To this end, we use parameter
estimation analysis with a whole time-domain method
and a sequential method.
2. The direct versus inverse solidification problem

2.1. Direct solidification problems

Fig. 1 schematically illustrates the 2-D model for the
solidification problem under consideration. The top and
Fig. 1. Schematic of a solidification process in a 2-D cavity.
bottom walls are thermally insulated. The temperature on
the left wall is fixed at a constant temperature above the
melting point, while the right hand-side wall is subject to
cooling. The melt, which is initially above the melting tem-
perature, starts to solidify as a result of cooling at the right-
side wall. The fluid flow and heat transfer in the system
are governed by the continuity equation, the Navier–
Stokes equations, and the energy balance equation. For the
melt flow, the standard Boussinesq approximation, q =
q0[1 � b(T � Tm)], has been used. The governing equations
for the problem are given as follows:

In the liquid region

r � u ¼ 0 ð1Þ

q
ou

ot
þ qu � ru ¼ �rp þ lr2u� gq0bðT � T mÞ ð2Þ

qC
oT
ot
þ qCu � rT ¼ kr2T ð3Þ

In the solid region

qC
oT
ot
¼ kr2T ð4Þ

On the solid–liquid interface

n � krT jl � n � krT js ¼ qH
os
ot

ð5Þ

In the above equations, u is velocity, T the temperature, q
the density, l the viscosity, k the thermal conductivity, b
the thermal expansion coefficient, Tm the melting tempera-
ture, p the pressure, C the specific heat, g the gravity, H the
latent heat, and s the solid–liquid interface. The no slip
condition is specified at the walls. The boundary conditions
are as follows:

u ¼ 0 at all boundaries ð6Þ
oT
oy
¼ 0 at y ¼ 0 and y ¼ h ð7Þ

T ¼ T o T o > T m at x ¼ 0 ð8Þ
T ¼ T L or q ¼ qLT m > T L at x ¼ l ð9Þ

where q is the heat flux. The solid–liquid interface is to be
obtained for the direct problem or the well-posed problem.
For the inverse problem, however, the solid–liquid inter-
face shape is specified, and the cooling condition on the
right wall is to be obtained.

2.2. Solution of direct problems

The governing equations described above along with the
boundary conditions are solved using the deforming Galer-
kin finite element method. The stiffness matrix is obtained
by using Galerkin’s method of Weighted Residuals. The
formulations and relevant benchmark tests were detailed
in a series of papers published earlier [13–16] and thus only
a brief summary is given here. The computational domain
is first divided into small elements. With each element, the
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dependent variable u, P and T are interpolated by shape
functions /, w and h.

uiðx; tÞ ¼ /TUiðtÞ ð10Þ

P ðx; tÞ ¼ wTPðtÞ ð11Þ

T ðx; tÞ ¼ hTTðtÞ ð12Þ

where the U, P and T are column vectors of element nodal
point unknowns. Substituting Eqs. (10)–(12) into the gov-
erning equations (1)–(3), we get the residuals R1, R2 and
R3 between the real solutions and the finite element solu-
tions of the continuity equation, momentum equations,
and energy equations respectively. The Galerkin form of
the Method of Weighted Residuals seeks to reduce these er-
rors to zero, and the shape functions are chosen the same
as the weighting function. The governing equations are re-
cast in an integral form, and the field variables are interpo-
lated using shape functions over the computational
domain. With an appropriate algebraic manipulation, the
following set of equations are obtained:

Z
X

w i
_

�r/T dV
� �

Ui ¼�e
Z

X
wwT dV

� �
P ð13Þ

Z
X

q//T dV
� �

dUi

dt
þ

Z
X

/qu � r/T dV
� �

Ui �
Z

X
î � r/wT dV

� �
P

þ
Z

X
lr/ � r/T dV

� �
Ui þ

Z
X

lð̂i � r/Þðĵ � r/TÞdV
� �

Uj

þ
Z

X
/hTqbgdV

� �
ðT�TmÞ ¼

Z
oX

n � s � î/dS ð14Þ

Z
X

qChhT dV
� �

dT

dt
þ

Z
X

qChu � rhT dV
� �

Tþ
Z

X
krh � rhT dV

� �
T

¼�
Z

oX
qT hdS ð15Þ

where s (sij = l(ui,j + uj,i)) is the viscous stress tensor. Once
the form of shape functions /, w, and h for velocity, pres-
sure and temperature respectively are specified, the inte-
grals defined in the above equations can be expressed in
matrix form. Combining the momentum and energy equa-
tions into a single matrix equation gives rise to the follow-
ing element stiffness matrix equation:

M 0

0 NT

" #
_U

_T

" #
þ

AðUÞþKþ 1
e EM�1

p ET BT

0 DT ðUÞþLT

" #
U

T

" #
¼

F

GT

" #

ð16Þ

Note that in constructing the above element matrix equa-
tion, the penalty formulation has been applied, and P in
the momentum equation is substituted by 1

e M�1
p ETU. The

assembled global matrix equations are stored in the skyline
form and solved using the Gaussian elimination method.
The coefficient matrices of Eq. (16) above are calculated
by
Mp ¼
Z

X
wwT dV ; NT ¼

Z
X

qChhT dV ; M ¼
Z

X
q//T dV ;

Ei ¼
Z

X
i
_

�r/wT dV

LT ¼
Z

X
krh � rhT dV ; AðUÞ ¼

Z
X

q/u � rhT dV ;

DT ðUÞ ¼
Z

X
qChu � rhT dV

BT ¼
Z

X
qbg/hT dV ; GT ¼ �

Z
oX

qT hdS;

F ¼
Z

oX
n � s/dS þ

Z
X

qbg/hTT m dV

Kij ¼
Z

X
lr/ � r/T dV

� �
dij þ

Z
X

lð̂i � r/Þ ĵ � r/T
� �

dV

To implement the deforming finite elements to model the
dynamic change of the moving interface, i.e., solidification
front between the liquid and solid, a quasi-Lagrangian
description is adopted. By this method, a region that covers
the solidifying liquid and solid is defined and the nodes
within the region are allowed to move in accordance with
the interface movement. These additional velocities that re-
sult from the mesh movement are added to the velocity
field as given in the above equations. The energy balance
equation describing the latent heat release and interface
change is directly integrated within the context of weighted
residualsZ

X
khn̂ � rhT dV

� �
Tl �

Z
X

khn̂ � rhT dV
� �

Ts

¼ �
Z

oX
qH

os
ot

hdS ð17Þ

which is applied as a surface energy source to the total ther-
mal energy balance equation, and added to the right-hand
side of Eq. (16). The above equation systems are solved
iteratively. Separation of the moving interface boundary
coordinates from the global finite element solutions for
field variables, however, requires the convergence of both
moving interface coordinates and field variables in two re-
lated loops. The interface tracking strategy used in the
present study involves an iterative procedure that entails
applying the energy balance equation along with the
interface as a surface source and searching for the interface
position coordinates based on each converged field calcula-
tions. The updated interface positions are then fed back to
the field calculations until both the interface position coor-
dinates and field variables are converged within a preset
criterion, which is set at 1 � 10�4 (relative error) for the
results presented below.

2.3. Solution of inverse solidification problems

The inverse solidification problem seeks the heat flux
distribution q that leads to a given solid–liquid interface
distance �d. Note that solidification interface distance, d, is
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defined as the length between the left wall and the solid–
liquid interface (Fig. 1). For the purpose of a numerical
analysis, we consider the unknown function q to be param-
eterized in the following form:

q ¼
XN

j¼1

qjfjðy; tÞ ð18Þ

where fj(y, t) (j = 1, . . . ,N) are known trial functions. This
approach is categorized to the parameter estimation ap-
proach. The inverse solution is to estimate the N unknown
parameters qj (j = 1, . . . ,N) by minimizing the following
objective function for the zeroth-order regularization
method

SðqÞ ¼
XL

i¼1

XM

j¼1

�dij � dijðqÞ
� �2 þ a

XN

i¼1

q2
i ð19Þ

where qi is the unknown parameters, �dij is the ideal solidi-
fication interface distance for time and space, dij(q) is the
estimated solidification interface distance corresponding
to the same time and space as �dij, L is the number of con-
trolled solidification distance for time, M is the number of
controlled solidification distance for space, and N is the to-
tal number of unknown parameters. Note that in this study
the zeroth-order regularization method is more appropriate
than the first- or second-order regularization method be-
cause reducing the magnitudes of the parameters are more
important than reducing the changes of the parameters or
the second differences of the parameters. In the above
equation, a is the regularization parameter. Eq. (19) can
be written in matrix form

SðqÞ ¼ �d� dðqÞ
� �T �d� dðqÞ

� �
þ aqTq ð20Þ

where qT=[q1,q2, . . . ,qi, . . . ,qN] , �d ¼ �d1
�d2 � � � �di � � � �dL

� �T ¼
½�d11

�d12 � � � �d1n
�d21 � � � �dij � � � �dLM �T, d(q) = [d1d2 � � � dL]T =

[d11d12 � � � d1Md21 � � � dLM]T. To minimize the least squares
norm given by Eq. (20), the derivatives of S(q) with respect
to each of the unknown parameters [q1,q2, . . . ,qN] are set to
zero, that is

oSðqÞ
oq1

¼ oSðqÞ
oq2

¼ � � � ¼ oSðqÞ
oqN

¼ 0 ð21Þ

This necessary condition for the minimization of S(q) can
be expressed in matrix notation by equating the gradient
of S(q) to zero, that is

rSðqÞ ¼ 2 � odTðqÞ
oq

� 	
�d� dðqÞ
� �

þ 2aqT ¼ 0 ð22Þ

Defining a sensitivity coefficient matrix

JðqÞ ¼ odTðqÞ
oq

� 	T

ð23Þ

If a forward difference scheme is used, the sensitivity coef-
ficient matrix with respect to qj is approximated by
J ij ffi
diðq1;q2; . . . ;qjþ kqj; . . . :;qN Þ� diðq1;q2; . . . ;qj; . . . ;qN Þ

kqj

ð24Þ

where k � 10�3. Eq. (22) becomes

JTðqÞ �d� dðqÞ
� �

¼ aq ð25Þ

For the non-linear problems, when the sensitivity coeffi-
cient has some functional dependence on the vector of
unknown parameters q, the problem is referred to as the
non-linear inverse problem. By the Taylor series expansion

dðqKþ1Þ ¼ dðqKÞ þ JðqKÞðqKþ1 � qKÞ ð26Þ

where K is an iteration index. Eq. (25) becomes

JTðqKþ1Þ �d� dðqKþ1Þ
� �

¼ aqKþ1 ð27Þ

Using Eq. (26) for the non-linear equation, Eq. (27)
becomes

JTðqKþ1Þ �d� dðqKÞ � JðqKÞðqKþ1 � qKÞ
� �

¼ aqKþ1 ð28Þ

and then

qKþ1 ¼ ðJðqKþ1ÞÞTJðqKÞ þ aI
h i�1

ðJðqKþ1ÞÞT �d� dðqKÞ þ JðqKÞTqK
h i

ð29Þ

Further assuming J(qK+1) � J(qK), we have the following
estimate for the unknown heat flux distribution:

qKþ1 ¼ ðJðqKÞÞTJðqKÞ þ aI
h i�1

ðJðqKÞÞT �d� dðqKÞ þ JðqKÞTqK
h i

ð30Þ
2.4. The L-curve method

It is well known that the success of the regularized min-
imization method described above depends on an appro-
priate choice of the regularization parameter. While
many techniques may be used for this purpose, the L-curve
appears to be useful for selecting the regularization param-
eter for moving boundary problems, because of the highly
non-linear nature of the problems. Note that since the
problem is non-linear, the Ordinary Cross-Validation
(OCV), the Generalized Cross-Validation (GCV) and Max-
imum likelihood method (ML) methods, which were uti-
lized in the inverse heat conduction problems [1], are in
general ineffective to find the optimal regularization
parameter. In addition, the discrepancy principle based
on the measurement error is not utilized because error
may not be easily specified. The L-curve method is consid-
ered a viable choice for this purpose. The L-curve method
[17], which was first proposed by Hansen, is based on an
algorithm that locates the ‘corner’ of a plot of the function
of norm of computed heat fluxes, kqk, versus norm of the
difference between computed solidification distance and
prescribed solidification distance, k�d� dk (Fig. 2). Note
that the norm k � k is defined by



Fig. 2. Illustration of determining optimal a using the L-curve method.
The corner point should be an optimal parameter.
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qk k ¼
XN

i¼1

q2
i

 !1=2

ð31Þ

Let U be a monotonically increasing function, we may
define the curve

L ¼ UðkqkÞ;Uð �d� d


 

Þ : a > 0

� �
ð32Þ

where U is chosen to be one of the following functions:

UðtÞ ¼ t; UðtÞ ¼
ffiffi
t
p
; or UðtÞ ¼ 1

2
log10t; t > 0 ð33Þ

In this way, we evaluate the compromised solution between
the residual error �d� d



 

 and the smoothness of the solu-
tion jjqjj.

2.5. Sequential method and whole time-domain method

The time domain in which the inverse problem is calcu-
lated may be another way to classify the methods of solu-
tion. Several schemes have been proposed for the time-
dependent inverse problem. A whole time-domain method
and a sequential method are useful methods for a parame-
ter specification inverse problem. The whole time-domain
method utilizes the whole part of the time domain to com-
pute unknown parameters in the inverse algorithm. On the
other hand, the time domain in the sequential method is
split into some parts of the time domain. Then unknown
variables in each time domain are calculated separately
and independently. The final conditions that are calculated
in each time domain are carried over to the next time
domain for the initial conditions. In the regularization
method, the most of the computation time is spent for com-
puting the sensitivity coefficient matrix (Eq. (23)). All of the
time steps must be considered to form the sensitivity coef-
ficient matrix for the whole time-domain method. There-
fore, the whole time-domain method is computationally
expensive and time-consuming. On the other hand, each
time domain in the sequential method has the smaller num-
ber of the time steps than in the whole time-domain
method. As a result, the number of the sensitivity coeffi-
cients to compute is reduced. Therefore, the sequential
method allows us to store small space of a computer mem-
ory. In addition, the computation time of the sequential
method is faster than that of the whole time-domain
method. The whole time-domain method, however, may
be suitable for the problems where variables in the early
time domain affect the controlled parameters in the late
time. These problems include the solidification process in
which the effect of diffusion and latent heat is considered.
We use and evaluate both the whole time-domain and
sequential methods in this paper.
2.6. Scaling

We use a polynomial approximation for the trial func-
tions (Eq. (18)) to find optimal heat flux solutions. When
variables of the polynomial function are either in a small
or large range, scaling needs to be performed for the vari-
ables of the polynomial functions. Scaling is a transforma-
tion of the polynomial function in order to obtain an
optimal solution of the inverse calculations. The poorly
scaled functions make the solution more unbalanced. For
example, when a second order polynomial function,
q(y) = a1y2 + a2y + a3 (0 6 y 6 0.01), is used for approxi-
mating an optimal solution, the coefficient a1 for y2 has
very small effect compared to a2 and a3 because y2 is a very
small value in 0 6 y 6 0.01. In other words, q(y) is less sen-
sitive to small changes in a1 than those in a2. Thus, the sen-
sitivity coefficients Ji1 (Eq. (24)) for a1 become very small.
When these sensitivity coefficients are used to find the opti-
mal solution, we obtain the solution in which the value of
a1y2 is small and negligible. That is, the solution using this
polynomial function has a strong linear relationship
between y and q. For overcoming this drawback, the poly-
nomial function should be changed to

qðyÞ ¼ a1 � ð10�4y2Þ þ a2 � ð10�2yÞ þ a3

Since the variables (10�4y2, 10�2y, and 1) are linearly inde-
pendent and generate a second order polynomial function,
no loss of generality is incurred by the use of the scaled
polynomial function. In addition, the scaled function
makes the solution more balanced. If the above polynomial
function were used, the trial functions of Eq. (18) would
be

f1ðy; tÞ ¼ 10�4y2

f2ðy; tÞ ¼ 10�2y

f3ðy; tÞ ¼ 1
2.7. Piecewise functions

In the whole time-domain method, we use the piecewise
approximation for an optimal heat flux solution. The final
time tf is given in the calculation. We split the time domain
into I domains as follows:

0 ¼ t0 < t1 < t2 < � � � < tI ¼ tf ð34Þ
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Piecewise functions Pi(t) are defined as

P iðtÞ; ti�1 < t < ti; i ¼ 1; . . . ; I ð35Þ

If the above piecewise function were used for the inverse
calculation, the parameterized function of Eq. (18) would
be

q ¼ P iðtÞ ¼
XN

j¼1

qi
jf

i
j ðy; tÞ; ti�1 < t < ti; i ¼ 1; . . . ; I ð36Þ

Unknown parameters of I � N would be found in the
inverse calculations.
0.02
3. Numerical implementation, results and discussion

The direct and inverse algorithms described above
enable the prediction of solid–liquid interface for a set of
given boundary conditions and of the heat flux distribution
along the boundaries for a prescribed interface movement.
An inverse design of solidification process with natural
convection is solved to find the optimal heat flux solution
for specified solid–liquid interfaces. The regularization
method along with the L-curve method is implemented
for the inverse design solidification problem.

In this section, we address the direct transient solidifica-
tion problem with convection and briefly discuss the effects
of convection on the solid–liquid interface (Section 3.2).
Finally, we consider the inverse design of solidification pro-
cesses (Section 3.3). In particular, the initial conditions of
the transient solidification problem is obtained using the
inverse steady-state solidification problem without convec-
tion (Section 3.1)

In the direct and inverse problems, we consider a solid-
ification process for pure aluminum confined in a square
mold (0 6 x 6 0.02m, 0 6 y 6 0.02m). Quadrilateral linear
elements, 22 � 44, are used in each solid region and liquid
region (Fig. 3).
Fig. 3. Quadrilateral linear elements for the direct and inverse problems.
The left side is specified as a liquid region. The right side is a solid region.
3.1. The inverse steady-state solidification problem

without convection

First, the inverse steady-state solidification problem
without natural convection is solved. The detail description
for the inverse steady-state solidification problem is shown
in [12]. The cavity is thermally insulated at the top and bot-
tom. The left wall is fixed at T = 1220 K above the melting
temperature (Tm = 933 K). The gravity force is not
applied. The locations of the desired solid–liquid interface
for the cases 1 and 2 are specified in Fig. 4. We find the
optimal heat flux solution on the right wall required to
achieve these solid–liquid interfaces. The direct problem
is then solved to find the temperature distributions
(Fig. 5a and b). These temperature distributions are used
to set the initial conditions for the transient solidification
calculations described below.
3.2. The direct problem for transient solidification

processes with convection

The direct problems for transient solidification processes
were studied extensively in [13–16]. Our objective to pres-
ent the direct problem in this paper is to see how much a
vertical straight line for the solid–liquid interface moves
and deforms at a certain time by the effect of natural con-
vection. The initial temperatures are given in Fig. 5a. Thus,
the solid–liquid interface for the initial state is located at
x = 0.015 vertically. The top and bottom walls are kept
adiabatic. The temperature of the left wall is fixed at
1220 K, which is above the freezing temperature Tm =
933 K. The right side wall is imposed with heat extraction
(q = �4 � 106 W/m2), which will cause the solidification
to occur. The gravity force, 9.8 m/s2, is applied downward.
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Fig. 4. Prescribed locations for the solid–liquid interface in the cases 1 and
2. Case 1 is a vertical straight line (x = 0.015). Case 2 is a sine curve
(x = �0.001cos(50p(y � 0.02)) + 0.015).
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A constant time step Dt = 0.02 s is selected with the final
time of 0.6 s. Fig. 6 shows the velocity distribution at
t = 0.6 s. For this problem, it is found that the solid–liquid
interface at t = 0.6 s is strongly affected by the convection
in the cavity. If the natural convection were not present,
Fig. 6. Velocity distribution at t = 0.6 s for the direct solidification
problem. The initial solid–liquid interface was located at x = 0.015 m
vertically.
a vertical solidification front would have been achieved.
We also see that the solidification occurs, and the solid–
liquid interface moves leftward.
3.3. The inverse time-dependent solidification problem

We tested two cases for the inverse time-dependent
solidification problems. In the case 1, the initial solid–
liquid interface is a vertical straight line located at
x = 0.015. The case 2 has an initial solid–liquid interface
with a sine wave shown in Fig. 4. The initial temperatures
in the cases 1 and 2 are given in Fig. 5a and b, respectively.
The top and bottom walls are kept adiabatic. The temper-
ature of the left wall is fixed at 1220 K. In addition to the
above initial and boundary conditions, we also desire that
solidification occur with the prescribed growth conditions
where a desired solid–liquid interface is moving leftward
with a prescribed constant velocity, 1.17 � 10�2 m/s. To
this end, the ideal solidification distance �dij is specified at
every node point of the solid–liquid interface in every
0.04 seconds. Note that the interfacial velocity must be
constant for a uniform microstructure in the final casting.
The gravity force, 9.8 m/s2, is applied downward. A con-
stant time step Dt = 0.02 s is selected with the final time
of 0.6 s. Our interest is to find the optimal heat flux distri-
bution on the right wall in order to obtain prescribed solid–
liquid interfaces. To evaluate the accuracy of our inverse
algorithm, the standard deviation is defined in the follow-
ing equation:

ri ¼
PM

j¼1
�dij � dij

� �2

M

 !1
2

ð37Þ

where M is the number of controlled solidification distance
for space. First, we use the parameter estimation with
fourth order polynomial functions for time, t, and space,
y. We also use the technique of scaling. Thus, the approx-
imate heat flux solution is

q ¼ q1ð108y4Þ þ q2ð106y3Þ þ q3ð104y2Þ þ q4ð102yÞ
þ q5ð104t4Þ þ q6ð103t3Þ þ q7ð102t2Þ þ q8ð10tÞ þ q9 ð38Þ

The parameters q1, q2, q3, q4, q5, q6, q7, q8, q9, are calculated
in the regularization method with L-curve. If this inverse
problem were solved in the function estimation (without
using the polynomial approximation), the number of un-
known parameters would be 1320 because there would be
44 unknown parameters for space and 30 unknown para-
meters for time. Thus, the parameter estimation with the
polynomial function results in the significant reduction of
the calculation time and the computer memory.

We first examine the convergence for the non-linear reg-
ularization method. Fig. 7 shows the convergence rate of
the calculations. Two iterations are found to be enough
for the regularization method to converge the calculations.
Fig. 8 shows the L-curve plots for this problem. There is a
convex point located at a = 1E�22. Thus, we select 1E�22
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as an optimal regularization parameter. Fig. 9 shows that
the heat flux solution using a = 1E�22. Fig. 10 is time his-
tory of the standard deviation r Eq. (37) for the error of
the solid–liquid interface by using the optimal heat flux
solution. As seen from the figure, the error reaches the low-
est point at t = 0.28 s and then shoots up until final time.
Fig. 11 shows the percent errors of the solid–liquid distance
at t = 0.6 s. The maximum percent error at t = 0.6 s is 5%.
Since only nine unknown parameters for the polynomial
functions are solved, the heat flux distribution (Fig. 9)
found by the regularization method is a smooth and simple
curve. To control the solidification distance accurately,
more complex curve for the heat flux distribution needs
to be obtained. For this purpose, we use the sequential
method and the whole time-domain method with the piece-
wise polynomial functions. These two methods described
below make the inverse calculations more accurate, but
time-consuming.

3.3.1. Sequential method

In the sequential method, the time domain is split into
some parts. Due to the diffusion time, it is critical to choose
appropriate time domain in order to obtain the optimal
heat flux solutions. After doing numerical experiments, we
found that 0.2 s is enough time to calculate the optimal
heat flux solution in this problem. Thus, we divide the
time domain into three parts. The first time domain
ranges from 0 s to 0.2 s followed by the second time
domain (0.2 s 6 t 6 0.4 s) and the third time domain
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(0.4 s 6 t 6 0.6 s). Each domain is calculated independently
by using the regularization method. Thus, three calculations
of the regularization methods are performed in a sequential
manner. At the boundaries of the time domains (t = 0.2 s
and 0.4 s), the temperature and velocity distributions are
carried over to the next time domains. That is, the temper-
ature and velocity distributions at t = 0.2 s calculated in the
first time domain are used for the initial conditions in the
second time domain. The same holds true for the conditions
at t = 0.4 s for the second and third time domains. The fol-
lowing fifth order polynomial functions for time and space
are used to find the optimal heat flux distribution:

q ¼ q1ð108y4Þ þ q2ð106y3Þ þ q3ð104y2Þ þ q4ð102yÞ
þ q5ð104t4Þ þ q6ð103t3Þ þ q7ð102t2Þ þ q8ð10tÞ þ q9 ð39Þ

where 0 6 y 6 0.02, 0 6 t 6 0.2. Nine unknown parame-
ters, q1, q2, q3, q4, q5, q6, q7, q8, q9, are computed in the in-
verse calculations for the each time domain. Thus, a total
of 27 unknown parameters are solved in the sequential
method.
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Fig. 16. Optimal heat flux solutions in the case 1 for (a) the sequential
method and (b) the whole time-domain method with the piecewise
polynomial function.
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3.3.2. Whole time-domain method with piecewise

polynomial functions

The piecewise polynomial functions are used to find the
optimal heat flux solution. In the whole time-domain
method, the following scaled piecewise polynomial func-
tions are used:

q ¼ qið108y4Þ þ qiþ1ð106y3Þ þ qiþ2ð104y2Þ

þ qiþ3ð102yÞ þ qiþ4 104ðt � aÞ4
h i

þ qiþ5 103ðt � aÞ3
h i

þ qiþ6 102ðt � aÞ2
h i

þ qiþ7 10ðt � aÞ½ � þ qiþ8 ð40Þ

where

0 6 y 6 0:02;

i ¼ 1; a ¼ 0 in 0 6 t 6 0:2

i ¼ 10; a ¼ 0:2 in 0:2 6 t 6 0:4

i ¼ 19; a ¼ 0:4 in 0:4 6 t 6 0:6

8><
>:

In the above equation, 27 coefficients of the polynomial
function are solved by the regularization method. We use
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the same-scaled function as in the sequential method using
Eq. (39). Thus, when the whole time-domain method is
compared to the sequential method, the difference of the
scaling effect can be neglected.

3.3.3. Convergence rate
We first examine the convergence for the sequential

method and the whole time-domain method. Figs. 12 and
13 show the convergence rate for the first time domain in
case 1 for the sequential method and for the whole time-
domain method with the piecewise polynomial function,
respectively. In the sequential method, the convergence
reaches at the second iteration. The whole time-domain
method needs as little as three iterations for the
convergence.
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Fig. 18. Standard deviations r (Eq. (37)) for the error of the solid–liquid
distance for (a) the case 1 and (b) the case 2.
3.3.4. L-curve method

To find an optimal regularization parameter, the
L-curve method is used for our calculation. Fig. 14 shows
the L-curve plots for the first time domain of the sequential
method in the case 1. Fig. 15 shows the L-curve plots for
the whole time-domain method with the piecewise polyno-
mial function in the case 1. These figures show the turning
points, which are considered the optimal regularization
parameters. The regularization parameters, a = 1E�24
and 1E�25, are selected in the sequential method and the
whole time-domain method, respectively. For other cases,
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Fig. 19. Percent errors of the solid–liquid distance at t = 0.6 for the
sequential method for the case 1.
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the L-curve plots are also taken, and the optimal regulari-
zation parameters are chosen in the same manner.
3.3.5. Optimal heat flux solutions

Using the optimal regularization parameter found in the
L-curve method, the optimal heat flux solutions are found
for the cases 1 and 2 in both the sequential method and the
whole time-domain method with the piecewise polynomial
function. Fig. 16a and b show the optimal heat flux solu-
tions in case 1 for the sequential method and the whole
time-domain method. These heat flux solutions are almost
identical. Fig. 17a and b show the optimal heat flux solu-
tion for the sequential method in the case 2. We also find
Fig. 21. Velocity (left) and temperature (right) distr
that the heat flux solution for the whole time-domain
method is almost identical to the heat flux solution for
the sequential method. Since we divide the time domain
for the heat flux solution into three parts, non-smooth
functions with kinks for the heat flux distribution are seen
at the boundaries of the time domains (t = 0.2 s, 0.4 s).
3.3.6. Validation of the inverse design solutions and

comparison of the sequential method and the whole

time-domain method

Fig. 18a and b show time history of the standard devia-
tion r Eq. (37) for the error of the solid–liquid distance in
the cases 1 and 2, respectively. The standard deviation in
ibutions at times t = 0.2,0.4,0.6 for the case 1.
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the earlier time stage of each time domain (t = 0.2, 0.4 s) is
found to be less accurate in the sequential method. This is
because the heat flux on the right wall diffuses toward the
solid–liquid interface, and the diffusion time is required
for a thermal front to penetrate the solid domain and reach
the solid–liquid interface. Thus, it is physically difficult to
control the solid–liquid interface immediately after the ini-
tial time. The error of the whole time-domain method with
the piecewise polynomial functions is more damped and
slightly accurate than that of the sequential method. Over-
all, the standard deviations for the error of distance in both
the sequential and whole time-domain methods are small
enough to consider that our inverse algorithm is reasonably
accurate to control the solid–liquid distance. Fig. 19 shows
Fig. 22. Velocity (left) and temperature (right) distr
percent errors of the solid–liquid distance at t = 0.6 for the
sequential method for case 1. The percent errors of the
sequential method are ten times smaller than in the whole
time-domain with nine unknowns (Fig. 11). Fig. 20 shows
percent errors of the solidification distance at t = 0.6 for
the whole time-domain method for the case 2. The percent
errors are less than 1%. Figs. 21 and 22 show the velocity
and temperature distributions at t = 0.2,0.4, 0.6 in the cases
1 and 2 for the sequential method by using the optimal heat
flux distributions. The cold temperature distributions are
seen at the upper right corner to eliminate the effect of nat-
ural convection. We also see that the solid–liquid interface
moves leftward at a constant velocity as we specified in our
calculation.
ibutions at times t = 0.2,0.4,0.6 for the case 2.
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4. Concluding remarks

This paper has presented a computational algorithm for
the inverse design of solidification processing systems. The
algorithm entails the use of the Tikhonov regularization
method, along with an appropriately selected regulariza-
tion parameter. The direct solution of the moving bound-
ary problem is solved using the deforming finite element
method. The direct and inverse formulations are presented.
The determination of the optimal regularization parameter
a using the L-curve method is also given. The design algo-
rithm is applied to determine the appropriate boundary
heat flux distribution to obtain prescribed solid–liquid
interface in a 2-D cavity. The whole time-domain method
and the sequential method are used to approximate the
optimal heat flux solutions. These results show that the
sequential method is comparative to the whole time-
domain method if the diffusion time of the heat flux is cau-
tiously considered. We also find that the regularization
method with L-curve is reasonably accurate for designing
solidification processing systems.
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